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ABSTRACT 
 
Climatic variability occurs at widely varying time scales. Better knowledge of such variability combined 
with probabilistic forecasting capabilities is valuable for agricultural decision making at the farm, 
marketing or policy level. Agricultural simulation models can help to add value to this improved 
understanding of climate variability and are used to objectively assess management options. Decisions 
based on such tools ranges from short-term, tactical crop management options to policy decisions about 
future land use. At the strategic level they allow answers to questions such as: Are the current cropping 
systems in Australia best suited for their individual region’s climate variability? How will these systems 
perform over the next few decades? This systems analytical approach is at the centre of several research 
projects that evaluate and compare current cropping systems against the background of climatic 
variability at various time scales. Although knowledge of likely temperature ranges (and particularly high 
and low temperature thresholds) can also influence agricultural decisions, our focus for this paper is on 
rainfall variability, which is still the major source of yield fluctuations in Australia.  
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INTRODUCTION  
 
Perfect knowledge of future rainfall would fundamentally change the way agriculture is practised - 
Discuss.  
 
Many research proposals in the disciplines of atmospheric sciences, oceanography, climatology and 
agriculture use this or similar statements to justify their proposed activities. This ingrained assumption is 
rarely challenged, but it touches on two issues that are fundamental when considering the value of climate 
information in decision making:  
 
The first issue is the notion that such ‘perfect knowledge’ might be – at least theoretically – achievable. 
Although we still have much to learn about the underlying physical processes we now appreciate that 
climate has many chaotic and non-deterministic features which will prevent us from ever achieving 
complete certainty in climate forecasting. Any categorical forecasting system is therefore either wrong or 
dishonest (23).  
 
The second issue is the implicit assumption that a forecast will be useful and lead to improved outcomes. 
Although many examples can be found where this is clearly the case, a similar number of cases show 
either negative outcomes or identify decisions that are insensitive to such information. 
 
It is our objective to show that via a systems analytical approach, climate information and long-range 
climate forecasting can positively influence agricultural decision outcomes. Therefore, we will 
 briefly describe the major climatic patterns that cause rainfall to vary; 
 present data from case studies in Qld, SA and Vic showing the effect of climate variability at various 

time scales; 
 discuss the importance of systems analytical tools (ie. simulation models) to progress from a rainfall 

forecast to improved outcomes for decision makers and 
 address issues of temporal scale in seasonal forecasting ranging from bi-monthly climate patterns to 

climate change. 
 



Background 
 
Rainfall variability and its interaction with land management has shaped Australian agriculture since the 
beginning of white settlement over 200 years ago. In less than a century European settlers had 
transformed much of Australia’s natural landscape. Extreme climate events combined with factors such as 
overgrazing resulted in major long-term resource degradation (20). High rainfall variability is also the 
major source of dryland yield fluctuations (10). Although most dramatic at the farm level, this effect of 
climatic variability is apparent throughout the entire Australian economy and can even affect 
macroeconomic indicators such as international wheat prices (5), employment or the exchange rate (39). 
Overall however, Australia’s rainfall variability has resulted in cropping systems that are generally 
resilient, ie. they are capable of absorbing some of that variability without immediate disastrous results. 
Typical examples for this are the dryland wheat/cotton rotations of the Darling Downs which use stored 
soil moisture as a buffer against low in-season rain and the wheat/pasture rotations in Southern Australia 
that remain productive even under adverse climatic conditions. Although such rotations have been 
developed in response to the predominant climatic conditions, they are not necessarily optimally adapted. 
Meinke and Hammer (22), for instance, showed that the production systems for peanuts in Southern 
Queensland were well adapted to the above average summer rainfall conditions of the 1950s to 1970s but 
resulted in unrealistically high yield expectations for the changed climate patterns of the 1980s and 1990s.  
 
To remain economically viable in an internationally competitive market, Australian farmers have to 
devise management options that can produce long-term, sustainable profits in such a variable 
environment. This requires a sound understanding of the sources of rainfall variability, their degree of 
predictability and objective tools to assess management options in agronomic, economic and 
environmental terms. Demonstrating the effect of climate variability must not be confused with either the 
real or potential impact of a forecast. Effective applications of climate information, including climate 
forecasts, will depend on factors such as the type of forecast provided and its suitability for influencing 
specific decisions (9). 
 
 
CLIMATE VARIES AT A RANGE OF SCALES 
 
Research and experience over recent decades has shown that the El Niño - Southern Oscillation 
phenomenon (ENSO) plays a critical role in partially explaining rainfall variability in many countries, 
including Australia. However, ENSO is not the only source of rainfall variability. In addition to an 
inherently unpredictable chaotic component there are a range of other climate phenomena varying at a 
wide range of time scales. It is not surprising that there is now considerable research effort to better 
understand these phenomena. This effort is being directed towards work on high frequency phenomena 
such as the Madden-Julian Oscillation (MJO, also known as the intra-seasonal oscillation or ‘ISO’), to 
ENSO related information (eg. SOI or SST based forecasting systems), to decadal and multidecadal 
rainfall variability and finally to greenhouse related changes in climate patterns (Tab. 1).  
 
At the highest frequency, the MJO involves variations in wind, sea surface temperature, cloudiness and 
rainfall that occur regularly every 30 to 50 days. It consists of cloud clusters that originate in the Indian 
Ocean and move eastward with speeds of 5-10 ms-1. The MJO particularly affects the intensity and break 
periods of the Australian monsoons and also interacts with ENSO. ENSO is a quasi-periodic interannual 
variation in global atmospheric and oceanic circulation patterns that causes local, seasonal rainfall to vary 
at many locations throughout the world (35). The physical causes of lower frequency rainfall fluctuations 
are still being investigated, but our understanding of these processes is also steadily increasing (1, 32, 40). 
This enhanced understanding of the causes and consequences of rainfall variability at a range of time 
scales and our increasing ability to predict these cycles has made ‘managing for climate variability’ an 
important feature of Australian farming systems.  
 



Table 1: Known climatic phenomena and their return intervals (frequency, in years) that contribute 
to rainfall variability in Australia. 
 

Name and/or Type of Climate 
Phenomena 

Reference (eg. only) Frequency 
(approximate, in 
years) 

Madden-Julian Oscillation, 
intraseasonal (MJO or ISO) 

Madden and Julian (18) 0.1 – 0.2 

SOI phases based on El Niño – 
Southern Oscillation  (ENSO), 
seasonal to interannual 

Stone et al. (35) 0.5 – 7 

Quasi-bi-annual Oscillation(QBO) Lindesay (17). 1 – 2 
Antarctic Circumpolar Wave 
(AWC), interannual 

White (40) 3 – 5 

Latitude of Sub-tropical ridge, 
interannual to decadal 

Pittock (30) ?? – 11 

Interdecadal Pacific Oscillation 
(IPO) or Decadal Pacific 
Oscillation (DPO) 

Zhang et al. (41) 
Power et al. (32) 
Tourre and Kushnir (38) 
Mantua et al. (19) 
Allan (1) 

13+ 
 
13 – 18 

Multidecadal Rainfall Variability Allan (1) 18 – 39 
Interhemispheric Thermal Contrast 
(secular climate signal) 

Folland et al. (7) 50 – 80 

Climate change Timmermann et al. (37) 
Kumar et al. (16) 

??? 

 
 
 
THE ROLE OF MODELLING IN CROPPING SYSTEMS MANAGEMENT 
 
In managing agricultural systems, farmers make decisions that are influenced by many factors. While 
economic returns are of primary importance, decisions are also based on perceived risk of economic loss, 
weed and disease control, the risk of soil degradation, lifestyle and the existing policy framework. Most 
management decisions have to fit within a whole farm strategic plan such that many decisions are planned 
months ahead and their consequences seen months afterwards. This requirement for a certain lead-time 
between deciding on a course of action and realising its results is a characteristic of managing cropping  
and grazing systems (2, 3). 
  
Decisions that could benefit from such targeted forecasts are also made at a range of temporal scales. 
These range from tactical decisions regarding the scheduling of planting or harvest operations to policy 
decisions regarding land use allocation (eg. grazing systems vs cropping systems). Table 2 gives a few 
examples of these types of decisions at similar time scales to those seen in climatic patterns.  
 
Table 2: Agricultural decisions at a range of temporal and spatial scales that could benefit from 
targeted climate forecasts. 
 

Decision Type (eg. only) Frequency (years) 
Logistics (eg. scheduling of planting / harvest operations) Intraseasonal (> 0.2) 
Tactical crop management (eg. fertiliser / pesticide use) Intraseasonal (0.2 – 0.5)    
Crop type (eg. wheat or chickpeas) Seasonal (0.5 – 1.0) 
Crop sequence (eg. long or short fallows) Interannual (0.5 – 2.0) 
Crop rotations (eg. winter or summer crops) Annual/bi-annual (1 – 2) 
Crop industry (eg. grain or cotton) Decadal (~ 10) 
Agricultural industry (eg. crops or pastures) Interdecadal (10 – 20) 
Landuse (eg. agriculture or natural systems) Multidecadal (20 +) 



Landuse and adaptation of current systems Climate change  
 
 
Climatic patterns translate via rainfall variability into associated production variability. However, rainfall 
anomalies are not the only determinant of yield and factors such as starting soil moisture, temperature, 
planting dates and timeliness of rainfall strongly influence final yields. Simulation models integrate all 
these effects in a physiologically meaningful way. Although rainfall and yield are strongly correlated, 
consequences of rainfall variability will differ from season to season due to these other influences on 
yield formation. 
 
A simulation approach offers other advantages, too: Analysing agricultural systems and their alternative 
management options experimentally and in real time is generally not feasible because of the length of 
time and amount of resources required. Well-tested simulation approaches offer a time and cost-efficient 
alternative to experimentation on the physical system and results can be obtained in hours or days rather 
than years or decades. This provides the capacity to assess a large a number of combinations. Today 
simulation analyses have become a legitimate means of evaluating policy and resource management 
issues (eg., 26, 14), but they also provide valuable information for on-farm decision making (2, 24).  
 
Traditionally simulation models have been used as “knowledge depositories” by scientists in order to 
describe an area of interest. Once they became available, interest quickly shifted from curiosity about the 
underlying principles to using models in a predictive capacity (eg. to develop scenarios or as a decision 
support tool) or in an explanatory capacity to investigate interactions between processes usually only 
studied in isolation. This use of models has started a debate about the appropriate way of mathematically 
describing biological relationships, and the level of detail needed for a “good” model. Arguments about 
the “right” way of modelling have largely concentrated on the level of empiricism acceptable when 
representing biological, chemical and physical processes mathematically. This debate has not been very 
helpful, since it has been conducted by groups interested in using models for different purposes, namely 
to either explain how a system operates or to predict the system’s behaviour (21). Some of the emerging 
challenges in genomics require a more balanced emphasis on both attributes and might show a way 
forward. 
 
Models are useful because they reduce the complexity of the real system to a level that allows us to 
predict the consequences of manipulating the system. The amount of process detail contained within a 
model should match its intended application. However, care needs to be taken whenever the level of 
process detail is reduced that we can demonstrate that this simplification is based on a sound 
understanding of the underlying processes. To reduce number and uncertainty of parameters in simulating 
biological systems, a process based approach can be replaced by a phenomenological description of that 
process without sacrificing scientific principles. This requires that (a) the process is already understood at 
the more basic level and (b) the phenomenological description is general across a wide range of 
conditions and of low complexity with easily derived parameter values. This will increase the predictive 
ability of the model and may eventually lead to a more advanced, formal framework for dealing with 
holistic concepts and emergent systems properties (8). In situations where multiple hypotheses are 
possible, one can discriminate amongst them based on their plausibility (29). This plausibility is given by 
the parsimony principle, or Occam’s razor, whereby the most plausible explanation is that which contains 
the simplest ideas and least number of assumptions (6). 
 
Biological models can never be completely verified. At best, we can present case studies and examples of 
the models’ performance and argue that this is sufficient evidence to use model output for decision 
making. For instance, as part of research still in progress we tested the APSIM Wheat model on data from 
100 plant breeding experiments across 23 sites and several years and deemed its performance adequate 
(R2 = 0.6) to characterise the environmental component of GxE interactions (Fig. 1a, unpublished data, 
Cooper, pers. com.; 4). These experiments were not specifically conducted for model testing and while 
some information regarding soil type, soil water and nutrient status were available the data set still 
contains a considerable amount of parameter uncertainty. Using data from a longterm soil fertility trial 
(36) where all the necessary input parameters and starting conditions were available a R2 value of 0.8 was 
obtained (Fig. 1b). However, this dataset also highlights the deficiencies of using R2 values as an 
indicator of model performance (28). When only data from a dry year were used, R2 was zero (Fig. 1c), in 



spite of the models obvious ability to capture the year-to-year variation in yield (Fig. 1b). Obvious 
overpredictions at high yield levels (>4000kg ha-1) are generally the result of biotic stresses (ie. pests and 
diseases) that are not accounted for by the model (Fig. 1b). The example shows that the validity of a 
model does not depend on the correlation coefficient but rather on whether the inevitable difference 
between predicted and observed values are acceptable for the decision maker.  
 

 
 
Fig. 1: Performance of APSIM-Wheat against yield data from (a) 100 plant breeding experiments 
from 23 locations over several seasons (R2=0.6); (b) experimental results from soil fertility studies at 
a single site in Queensland over 8 years, 5 N levels and 2 surface management regimes (R2=0.8) and 
(c) results from (b) in a dry year (R2=0; data presented are included in (b), see arrow). 
 
 
UNDERSTANDING THE EFFECT OF CLIMATE VARIABILITY 
 
While the effect of ENSO on primary production in Northeastern Australia has been comprehensively 
documented (eg. 13), there is still considerable confusion about similar effects in the southern parts of 
Australia. When we either analysed historical district yield data from the Le Hunte district in SA (1916 – 
1997; Egan, pers. com., 2000) or simulated 100 years of wheat production based on historical rainfall 
records for three locations in SA, Vic and Qld using the APSIM model (11), we found that years that had 
either a positive or rising SOI pattern in April/May always had the highest median yields while a negative 
or falling SOI pattern often resulted in the lowest median yields (Fig. 2). Although there are strong 
regional idiosyncrasies (eg. a ‘near 0’ phase in SA only yields about 20 - 30% of the long-term average 
based on either district yield or simulated data; Fig. 2a,b), ENSO effects are clearly evident at all 
locations (Fig. 2). For SA the patterns found in the historical district yield data were similar to the 
simulated data, indicating (a) that rainfall variability in SA is also influenced by ENSO and (b) that 
rainfall variability is the major cause of wheat yield fluctuations in this environment (Fig. 2a,b). This 
contradicts the commonly held belief that ‘the SOI works only in Queensland’. 
 
However, ENSO is only one element of the full spectrum of climate variability (Table 1). Meinke et al. 
(25) used a shire-based wheat model (34) to analyse wheat yields for decadal/multidecadal variations 
(DCV). At the multidecadal time scale they showed that a negative (positive) DCV pattern often enhances 
(weakens) any ENSO related variability in many parts of Australia. However, they also noted 
considerable regional differences. Their study highlighted the need to better understand the physical 
causes for DCV and the associated potential to predict such climate variation. They also stressed the 



importance to connect such scientific developments with the information needs of decision makers in 
agriculture at the farm management level as well as at the policy level. 

Simulated wheat yields, Dalby
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Simulated wheat yields, Le Hunte District
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Actual wheat yields, Le Hunte District
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Fig. 2: Actual (a) and simulated relative wheat yields (b-d) by April/May SOI phases for the Le 
Hunte district (SA), Horsham (Vic) and Dalby (Qld). Solid bars represent the median, open circles 
the average yield for each SOI phase. The SOI phases are defined by Stone et al. (35) as: 
consistently negative (con neg), consistently positive (con pos), rapidly falling (rap fall), rapidly 
rising (rap rise) or near zero (near ‘0’). 
 
 
Using APSIM rather than a shire-based model, Pollock et al. (31) also investigated DCV effects on crop 
rotations in Central Queensland. They found the current trend of opportunity cropping winter as well as 
summer crops to be a well-adapted strategy based on the climatic patterns during the last two decades. 
Their results further indicated that summer cropping might be less risky and more profitable than winter 
cropping during times when the DCV patterns are negative.  
 
For wheat, Fig. 3 shows a modulating but varying effect of DCV on ENSO on district yield and simulated 
data. The APSIM model used for this analysis assumes optimal crop management without losses due to 
pests or diseases and does not take negative effects of excess water into account. However, when we 
compared model performance with longterm yield data from the Le Hunte district in SA we found good 
correspondence between district yield and simulated data in terms of relative yield trends and in response 
to ENSO and DCV (Fig. 3a, b). District yield data from 1916 to 1997 were used without attempting to 
remove technological advances (unpublished data, Egan, pers. comm, 2000, Fig. 3a). The model was run 
using 1998 cultivar, management and technology (Fig. 3b). 
 
For the Le Hunte district in SA both district and modelled data indicate that when DCV patterns are 
negative a year with a negative SOI phase often results in considerably lower wheat yields than a year 
with a positive SOI phase. This pattern is reversed when the DCV pattern is positive. At Wentworth, Vic, 
no clear effect of DCV was apparent but positive SOI phase years often result in higher yields than 
negative SOI years. The same SOI effect was apparent at Dalby, Qld, but here a negative DCV pattern 
further decreased yields when the SOI phase was negative, and often increased yields when the phase was 
positive (Fig. 3).  
 



Actual wheat yields, Le Hunte District
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Simulated wheat yields, Le Hunte District
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Simulated wheat yields, Wentworth
DCV = negative                                    DCV = positive
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Simulated wheat yields, Dalby
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Fig. 3: Standard deviations from the mean for actual (a) and simulated wheat yields (b-d) grouped 
by May/June SOI phases (negative phase = 1 and 3, closed circles; positive phase = 2 and 4, open 
circles) and by DCV patterns (negative pattern = 1 and 2, left of the vertical line; positive pattern = 
3 and 4, right of the vertical line). Data shown are for the Le Hunte District (SA), Wentworth (Vic) 
and Dalby (Qld). Circles indicate the median and squares the corresponding 10 and 90 percentile 
values, respectively. 
 
 
BETTER DECISIONS THROUGH TARGETED FORECASTING: THE PROBABILITY GAME 
 
Management decisions based on knowledge of future climatic conditions will have positive outcomes in 
some years and negative outcomes in others. This must not be regarded as either a ‘win’ or a ‘failure’ of 
the strategy employed, since each season only represents a sample of one from a not very well defined 
distribution of possible outcomes. To assess the true value of such probabilistic information requires 
comparison of results in each season against outcomes that would have been achieved in the absence of 
such information. The question remains: how can this demonstrable effect and knowledge of climatic 
patterns be translated into impact (ie. improved outcomes)? Decision making in agriculture happens at 
many levels and involves a wide range of possible users. To provide these clients with the most 
appropriate tools for decision making requires a clear focus on their specific requirements and needs. This 
is an important component of an effective systems approach that ensures the on-going connections 
between decision makers, advisors and scientists (9). Although farmers are one obvious client group they 
are not necessarily the ones most responsive to a forecast. This responsiveness depends very much on the 
socio-economic and political circumstances, local infrastructure and the agricultural system in question. 
To clearly identify clients and their decision points it is helpful to classify them according to geographic 
scale and information needs. Such a conceptual framework assists in identifying the information needs of 
decision makers, it also assists in selecting the most appropriate and efficient tools to use (9). Although 
modelling approaches are frequently the tools of choice, the type of model required will differ depending 
on geographic scale, required inputs and information needs.  
 
Some specific examples of the value of forecasting in decision making across the temporal scales are:  
1. cotton growers in Queensland, many of whom are now scheduling the timing of their cotton harvests 

based on the expected passing of the next Madden–Julian oscillation (18); 



2. farmers in northeastern Australia who use ENSO-based information to tailor their rotations and crop 
management based on local conditions at the time and rainfall probabilities for the coming months 
(24); 

3. bulk handling and marketing agencies which require accurate regional commodity forecasts to assist 
them in storage and transport logistics and export sales well before harvest (12); 

4. government agencies which require objective assessments of the effect and severity of climate 
variability on production (eg. 15) and 

5. policy makers who require impact assessments of greenhouse scenarios for input into international 
treaty negotiations (eg. 14). 

 
Other applications are currently under development and will incorporate climatic patterns associated with, 
for instance, the latitude of the subtropical ridge (30), the Antarctic Circumpolar Wave (40) and decadal 
and multi-decadal climate signals (25). 
 
Farmer decisions 
 
Hammer (9) demonstrated the basis for effective application and valuing of seasonal climate forecasting 
using a simple example of tactical management of row configuration in a cotton crop on the Darling 
Downs, Qld. He asked: Is it possible to improve profitability by tactically manipulating row configuration 
in dryland cotton in response to a seasonal climate forecast?  Using a simulation approach and 100 years 
of historical rainfall data he determined the most profitable option for row configuration (solid, single 
skip or double skip) for either all years or those years associated with  each SOI phase prior to sowing. 
The all years case relates to the situation where no notice is taken of the forecast each year. In this case 
(fixed management) the most profitable option over the 100-year period was to employ the solid row 
configuration every year. The other case takes account of the SOI-based forecast at the time of sowing.  
The analysis showed that with some forecast types it was more profitable on average to adopt either 
single or double skip row configurations (responsive management). To examine the value and risks over 
all years associated with adopting responsive management he then calculated the gross margin difference 
for each year between the responsive (tactical) and non-responsive (fixed) management options (Fig. 4).  
 
Comparing the tactical and fixed management approaches over the complete historical climate record 
gave an average gross margin increase about 6% (or 11% in profit; calculated by deducting fixed costs) 
when using tactical management. However, there were a number of specific years in which responsive 
management was inferior. Understanding this point about outcome risk is critical in effective applications 
of climate forecasting. While a significant advantage will often result over a period of years (as in this 
simple example), there can be no guarantees that this will occur in any particular year and in fact the 
decision-maker will sometimes be worse off. This process is described as “prototyping” decision rules 
that are relevant to the decision-maker and generates collective learning (9). Although the modelled 
predictions do not cover all aspects of the system involved, they behave essentially as “discussion” 
support systems in dealing with the complexities and risks associated with some decisions. 
 
This simple example demonstrates how the value associated with knowledge of shifts in rainfall 
probabilities can be determined for production management. The balance of probabilities dictates that 
users of this information will be better off in the long term. However, it does not eliminate production 
risks associated with a tactical response to a forecast nor does it eliminate the need for a producer to make 
a decision. The analysis does not provide a rule for best row configuration management in cotton. Such 
rules can only be developed by taking account of the very specific physical and economic circumstances 
of a specific enterprise; it must also account of  current production costs,  commodity prices and soil 
condition. 
 
Recent studies with selected farm managers in Queensland indicate that by using climate information in 
conjunction with systems analyses producers can become less reliant on climate information.  By 
identifying decisions that positively influence the overall farm operation in either economic or 
environmental terms, these producers have gained a better understanding of the system’s vulnerability 
and started to ‘climate proof’ their operations. Examples for actions taken when a forecast is for ‘likely to 
be drier than normal’ are: maximising no-till area (water conservation), applying nitrogen fertiliser early 
to allow planting on stored soil moisture at the most appropriate time; planting most wheat later than 



normal to reduce frost risk. In seasons that are likely to be wetter than normal, management options 
include: sowing wheat earlier; applying nitrogen to a wheat cover crop grown on a dry profile after cotton 
(normally not expected to produce a harvestable yield) and applying fungicides to wheat crops to 
minimise leaf diseases (24). 
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Fig. 4: Differences in gross margin between a tactical (responsive to seasonal forecast) and fixed 
(non-responsive) row configuration management strategies for each year of a cotton simulation 
study. Reproduced from (9). 
 
Marketing decisions 
 
Based on ENSO information (35) and a shire-based wheat model (34), Hammer et al. (12) developed a 
regional commodity forecasting system. It allows the examination of the likelihood of exceeding the long-
term median shire yield associated with different season types at the beginning of the cropping season. 
This system is now run operationally for Queensland by updating the projection each month based on the 
actual rainfall that has occurred and any change in the SOI phase from month to month. Although there 
appear to be commodity forecasting applications, this system was designed to inform government in 
Queensland of any areas that might be more likely to  experience poor crops in any year.  This 
information provides an alert for exceptional circumstances issues associated with potential drought in the 
same manner described for pasture systems in Queensland by Carter et al. (3). Anecdotal information 
received from marketing agencies based on their experience with the 2000 regional wheat outlook 
showed that seasonal crop forecasting in their decision making processes can be beneficial when it is used 
in addition to their current approaches. Possible decisions to be taken when the outlook is for “likely to be 
drier (wetter) than normal” are, for instance, forward buying (selling) of grain or shifting of resources 
from good yielding areas to poor yielding areas.  
 
Policy decisions 
 
For the seasonal to inter-seasonal time scale, Keating and Meinke (15), Stephens (34) and Hammer et al. 
(12) have shown how point-source and regionally based production models can be used to quantify 
exceptional circumstances and drought impacts. Howden et al. (14) give an example of the value of 
model applications to guide policy decisions for global warming scenarios. They investigated key 
adaptation options for wheat such as choice of cultivars and sowing windows and found significant 
regional differences for 10 sites throughout the Australian wheat belt. Specifically, they found likely 
impacts not only on production but also on grain quality characteristics such as protein content. Their 
findings imply that nitrogen fertilisation rates need to be increased in future if current grain quality levels 
are to be maintained. Using the same modelling approach, Reyenga et al. (33) found that by 2100 changes 
in temperature, CO2 levels and rainfall patterns could lead to a movement of the ‘cropping frontier’ in 
eastern Australia by about 100 km to the west. Such studies are likely to influence future land use policy 
decisions. 
 
 



SUMMARY 
 
We demonstrated how knowledge of climatic variability, its frequencies and its causes can lead to better 
decisions in agriculture regardless of geographical location. Amongst the most important tools are 
probabilistic climate forecasting capabilities and agricultural simulation models that allow objective 
evaluation of alternative decisions at the farm, marketing or policy level. To achieve such improved 
outcomes requires effective interdisciplinary research to develop holistic analytical approaches that 
adequately capture our ever increasing understanding of the physical systems. This must be 
complemented by participatory communication methods that ensure the on-going connections between 
decision makers, advisors and scientists. Examples of decisions aided by simulation output ranges from 
tactical crop management options, to commodity marketing and to policy decisions about future land use.  
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